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Abst rac t - -Many tectonic faults and tension fractures are, at least initially, composed of separate segments. This 
note deals with a little explored reason for this phenomenon which, in faulting, has obvious implications both for 
the migration of hydrocarbons and for the sealing capacity of faults. Theoretical arguments based on Coulomb-  
Mohr 's  theory of shear failure and on a theorem for the integrability of vector fields lead to the expectation that, 
in general, non-uniform and truly three-dimensional stress fields will impede the formation of smooth,  coherent 
fault surfaces; this is in contrast to the stress fields that are associated with plane deformation. Examples are given 
and special attention is drawn to the role of tectonic stress fields with horizontal principal stresses that change with 
depth in magnitude and direction. 

INTRODUCTION 

A PAPER by Segall & Pollard (1980), which deals with the 
elastic interaction of en-6chelon shear cracks, opens 
with the statement that "faults are discontinuous geolog- 
ical features consisting of numerous discrete segments" 
and continues later with "the processes responsible for 
the formation of discontinuous faults are largely un- 
known . . . "  Although the first statement may seem 
somewhat questionable in its generality (and probably is 
mainly applicable to faults in an early state of develop- 
ment) it may stress the importance of the subject and 
draw our attention to its relevance for hydrocarbon 
migration. The second statement should make it suf- 
ficiently clear that this note will be limited to certain 
aspects of the complex subject. 

When a fault is being initiated, shearing deformation 
is concentrated in narrow domains. Usually this does not 
immediately lead to the formation of a through-going 
shear band, since inhomogeneities in rock strength and 
local variations of the stress field may promote early 
formation of shear-band segments which later have to be 
connected into a tectonic fault. 

For example, bending of a sequence of alternating 
competent and incompetent (i.e. more ductile) beds will 
first induce faulting in the competent, brittle beds, while 
the incompetent beds will accommodate a certain 
amount of strain by creep or numerous small slips before 
being offset by faulting. Connection of the fault seg- 
ments will then result in faults which, at least in an early 
state, have a tortuous and splintered shape. 

Perhaps even more important than variations in lith- 
ology for the segmentary development of faults are 

variations in the stress field. It has, for instance, been 
mentioned by Beach (1975) that faults, when propagat- 
ing into a region with differently oriented principal 
stresses, will adjust to the change in stress regime by 
breaking up into an en-6chelon array of smaller shears. 
However, this I believe to be only one manifestation of 
a more general feature of certain non-uniform stress 
fields, which so far has not been noticed in rock 
mechanics and tectonics, and which is the subject of this 
note. 

Concentrating on the effect of the tectonic stress field, 
I assume mechanical homogeneity and strength isotropy 
of the rock and consider faulting in the brittle regime. 
The orientation of tangential elements of faults or fault 
segments is then solely determined by the stress field 
that initiated faulting. I specify the orientation of these 
tangential elements further by Coulomb-Mohr's  shear 
failure criterion, according to which the unit normal n of 
such an element is orthogonal to the axis of the inter- 
mediate principal stress and makes the angle/z = 45 ° + 
q~/2 with the axis of the greatest compressive principal 
stress. The 'angle of internal friction' q~ is assumed to be 
constant in the range of mean effective normal stresses 
considered. 

The important question now arises: will the Coulomb- 
slip elements, associated with a stress system in the limit 
state, integrate into smooth, coherent slip surfaces? In 
other words, will the infinitesimal, planar Coulomb- 
elements form the tangential elements of sets of smooth 
surfaces? Or, applied to tectonic faulting, will the stress 
field in the limiting state allow or impede the inception of 
smooth, coherent fault surfaces? 

To investigate this question I shall apply the so-called 
'integrability theorem' for vector fields. 
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Two-dimensional vector field-~ with trajectories: 
There always exists a set of non-intersecting 
lines which are orthogonal to vector field. 

b} 

Three-dimensional vector f ie ld '~with trajectories: 
Necessary and sufficient for the existence of a 
set of non-intersecting orthogonal surfaces is: 

-~. curl-q == 0 

Fig. l. Vector fields of principal stresses in two (a) and three (b) dimensions. 

T H E  I N T E G R A B I L I T Y  T H E O R E M  

The theorem states (see Appendix) that a differen- 
tiable vector field v will be everywhere normal to a set of 
smooth surfaces (Fig. 1) if, and only if, the scalar product 
of the vector field with its own curl vanishes 

v-curl  v = 0. (1) 

Written in extenso for a Cartesian x-, y-, z-system this 
condition becomes 

vx" (curl v)x + l:y. (curl V)y + I: z" (curl v)z 
=- v~(OVz/Oy - ~Vy/OZ)  + Vy(C~Vx/OZ - 19Vz/OX ) 

+ v z ( a v / a x  - OVx/ay) = 0 .  (2) 

Now we identify the vector v with the unit normal n of 
a set of Coulomb-slip elements and consider the unit 
vectors el and eni in the directions of the maximum and 
minimum (compressive) principal stresses. The vectors 
n, e~, eli I are coplanar, since n is orthogonal to e~, the 
direction of the intermediate principal stress. The three 
coplanar vectors are related by 

n = et cos /z  + em sin/~, (3) 

where 

/x = 45 ° + ~/2 (4) 

is the angle between n and ei. 
Since we have assumed that the material has the same 

angle of internal friction everywhere,  application of eqn 
(1) to the vector field n yields the following condition for 
the existence of continuous and smooth slip surfaces 

cos 2/ze~-curl e~ + sin 2/.~eii I • c u r l  en i  

+ sin /x cos/x[ei" curl eln + e l i  I • curl el]  = 0.  ( 5 )  

This quasilinear partial differential equation of first 

order in the derivatives must thus be satisfied by the 
vector fields e~ and e m, if Coulomb-slips are to define 
continuous, smooth slip surfaces. 

It is now easily seen that this condition is always 
satisfied if the directions of the greatest and smallest 
principal stresses are everywhere parallel to a given 
plane, as in problems of plane stress, and do not vary in 
a direction orthogonal to this plane. Identifying this 
plane with the x-, y-plane, all derivatives in the z-direc- 
tion vanish and, from the definition of curl v (see eqn 2), 
it follows that the only non-vanishing component  of 
curl e I and curl eli I is the z-component. Since, moreover,  
the z-components of el and em vanish, each of the inner 
products in eqn (5) vanishes and the integrability con- 
dition is satisfied. Hence,  in an isotropic, uniform 
material in a state of plane strain or plane stress, there 
will always exist a set of surfaces the normals of which 
coincide with the normals (eqn 3) of Coulomb-slip ele- 
ments (Fig. lb).  In other  words, the stress field will not 
impede the formation of continuous, smooth fault sur- 
faces. 

However,  the situation is drastically changed when 
the stress field is truly three-dimensional in the sense that 
no Cartesian reference frame can be found such that 
z-components and/or z-derivatives of the unit vectors e t 
and eni vanish. The products in condition (5) will then no 
longer vanish separately, and the condition will impose 
a genuine and severe constraint on direction fields of the 
maximum and minimum principal stresses that are com- 
patible with the existence of coherent,  smooth slip sur- 
faces. Therefore,  within the framework of Coulomb-  
Mohr's failure theory, incipient faults are, in general, not 
expected to form continuous, smooth surfaces in three- 
dimensional stress fields. This may be illustrated by a few 
examples of three-dimensional stress fields which violate 
the integrability condition (5). 
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dislocation on "~" ~ " ' ~ / / /  
wrench fault 

a .  TORSION OF CIRCULAR ELASTIC CYLINDER: 
Maximum shear stress acting parallel to circumference 
upon transverse cross-sections. Hence, highest tensile 
stress (ohl) inclined at 45 ° to cylinder axis 
and parallel to surface. 

b. SCREW DISLOCATION AS MODEL OF INITIAL STRESS FIELD IN 
OVERBURDEN NEAR BASEMENT FAULT. 
(TzO,='rt, ~ ~ b/r is maximum shear stress; hence ~,~ inclined 
at 45* to cylinderoxis) 

F i g .  2 .  T h r e e - d i m e n s i o n a l  f i e ld s  o f  p r i n c i p a l  s t r e s s  v e c t o r s .  

THREE-DIMENSIONAL TECTONIC STRESS 
FIELDS 

Figure 2(a) shows the case of small, pure torsion of a 
circular cylindrical bar, the axis of which coincides with 
the z-axis. The planar cross-sections perpendicular to 
the cylinder axis are subject to the maximum shear stress 
which acts in the circumferential direction. Conse- 
quently, the greatest (compressive) and smallest (ten- 
sile) principal stresses act tangential to the curved cylin- 
der surface at an inclination of +45 ° to the cylinder axis. 
One may easily verify that the associated unit vectors ei, 
em have the same x- and y-components, but their z- 
components have opposite signs 

vx = y/rV~, 12y = -x/rV~,  vz = +l /V% (6) 

The inner product of the two vectors therefore vanishes, 
in agreement with their orthogonality. With reference to 
eqn (2) one notices that only the z-components of the 
curls of e I and eii I do not vanish and attain the same value 
(-1/rV~).  Inserting the components (6) in eqn (5) one 
finds that the left-hand side becomes (cos 2/z - sin 2/z)/ 
2r. Because of eqn (4) this value differs from zero, and 
condition (5) is not satisfied. In fact, the deviation from 
zero increases in magnitude as the distance from the 
cylinder axis decreases. The case of a stationary screw 
dislocation (shown in Fig. 2b) is very similar. The simi- 
larity is apparent when the elements of a hollow cylinder 
are considered, the axis of which coincides with the 
dislocation line. The dislocation slip has occurred on a 
vertical plane over the triangular area with base b. If we 
interpret this dislocation as slip on a basement wrench 
fault and allow basement and overburden to have the 

same elastic properties, the stress field associated with 
the dislocation will represent the response in the over- 
burden to incipient wrench faulting in the basement. 
Again, as in the case of torsion, condition (5) is violated, 
which strongly suggests that Coulomb slip surfaces 
('Riedel' faults), which form when the stresses reach the 
limiting state should, at least initially, consist of in- 
coherent segments in the vicinity of the basement fault. 

A further example, inspired by a paper by McGarr 
(1980), is shown in Fig. 3. Here two horizontal principal 
stresses, o-~ and oriii, of a regionally uniform tectonic 
stress system vary with depth, both in magnitude and 
direction. This state of stress may be viewed genetically 
as resulting from the superposition of two more elemen- 
tary regional states of stress which reflect two distinct 
tectonic phases. The first phase has established a state of 
stress (marked by a superscript (1)) such that the princi- 
pal stress difference decreases linearly with depth 

O'/1) - -  o 'hl~ -~- f i x  (1) - -  O'y (1) -~- a - -  bz. (7) 

This may, for instance, have taken place during regional 
uplift of an elongated basin. In a second tectonic phase 
(indicated by the superscript (2) in Fig. 3) a horizontal 
compression is produced with horizontal principal stres- 
ses crt 2) and crt21, constant over the depth range con- 
sidered, and acting at 45 ° to the principal stress directions 
of the first tectonic phase. The x- and y-planes are then 
planes of maximum shear stress of the second system. 
The shear stress z~y z) and the normal stresses cr~ 2) = O'y  (2) 

on these planes can then immediately be expressed in 
terms of the principal stresses of system (2) as stated in 
the figure. Assuming linear elastic behaviour of the rock 
mass during the compression phase (2), we may add 
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FIRST PHASE -t" SECOND PHASE ,, TOTAL STRESS FIELD: 

DIFFERENCE IN HORIZONTAL PRINCIPAL CONSTANT COMPRESSION APPLIED DIRECTION OF ~-AXIS: 
STRESSES DECREASES LINEARLY WITH OVER DEPTH RANGE CONSIDERED; 
DEPTH (e.g IN A CERTAIN [~EPTH RANGE HORIZONTAL PRINCIPAL STRESS tn 2~ = 2Txy = 2-x(2)'r ~-o~ OF ELONGATED BASIN AFTER 'NON- AXES MAKE AN ANGLE OF 45 ° WITH 
PARALLEL' UPLIFT; PRICE 1974); THOSE OF FIRST SYSTEM; 

Fig. 3. Superposition of two regional stress regimes whose principal stresses do not coincide. (The vertical stress is a principal 
stress.) 

corresponding components of the two stress fields. 
When the stress components ox, o-y, rxy have been 
obtained, the angle ~ the o-I-axis makes with the positive 
x-axis may be determined by an elementary formula as 
indicated in the figure. Its value becomes the following 
function of the depth coordinate z 

qb = ~ arctan 2rxY = ½ arctan 2rx,y 
O-X-  o-y O-X (1) --  O'y (1) 

o-t :) - o-t?  = ½ arctan (8) 
a - b z  

Note that the relevant principal stress axes of the 
combined system are again horizontal, the intermediate 
principal stress remaining vertical, and that therefore 
the z-components of the unit vectors el, elii vanish. 
However, these vectors rotate with depth and, conse- 
quently, the z-derivatives in the curl components (2) will 
not vanish. The components of the two unit vectors are 

e t ~ = c o s ~ ,  e l y = s i n ~ ,  e i z = 0  
e m x  = - s in  ~ ,  enly = COS (I~, eliiz = 0. (9) 

With these components inserted, the left-hand side of 
condition (5) turns out to be equal to the magnitude of 
the gradient d ~ / d z  of the rotation angle ~ which, in view 
of (8), does not vanish as long as b ¢ 0 and the principal 
stresses of the compressive tectonic phase (2) differ in 
magnitude. 

The last example may stand for many more complex 
tectonic situations where the horizontal stresses are 
anisotropic and the differential stress varies with depth. 

A change in horizontal principal stress difference may 
take place, for instance, across the interface of beds 
which differ in stress response to the same regional 

strain. A second tectonic phase of the type shown in Fig. 
3 will then also cause the directions of the bed-parallel 
principal stresses to change discontinuously across the 
interface. Faulting across such an interface will therefore 
be complicated by an abrupt change in strike direction. 

The compressive second phase in Fig. 3 may be pro- 
duced by a uniaxial tectonic compression or by a (sinis- 
tral) horizontal simple shear that does not affect the role 
of the overburden stress as intermediate principal stress, 
nor introduce a dependence of the stresses on x and y. 
When, in the simple shear case, the resultant stresses are 
in the limiting state conducive to wrench faulting, poten- 
tial fault elements will be vertical and their strike line will 
be straight. The strike direction, however, will change 
with depth because of the changes in the direction of the 
horizontal principal stresses. It is obvious that the 
twisted elements cannot combine into a coherent smooth 
vertical fault surface, the incoherence becoming more 
noticeable the wider the fault zone extends along strike. 
This incoherence of wrench faults in the vertical direc- 
tion should not be confused with the well-known en- 
6chelon array of such faults ( 'Riedel' shears) in plan 
view. 

Considering somewhat modified versions of the situa- 
tion depicted in Fig. 3, we may, for instance, assume that 
the vertical normal stress is the maximum compressive 
stress and remains so during subsequent tectonic loading 
(phase 2), that is the principal stress orientation 
associated with normal faulting. Assuming that the state 
of stress is already close to the limiting state, a relatively 
small horizontal simple shear along the y-, z-plane may 
sufficiently reduce a horizontal normal stress, without 
affecting the maximum principal stress character of the 
overburden stress, to induce faulting. Because of vari- 
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Fig. 4. Segmentat ion of a normal  fault in a stress field in which horizontal principal directions rotate with depth.  

ations of lithology and confining pressure with depth, 
the stress changes imposed by this shearing phase, in 
particular z~ 2), will, in general, vary with depth. This 
and/or the depth-dependence of the initial horizontal 
differential stress will again make the orientation angle 

of the resulting horizontal minimum compressive 
stress a function of z. The unit vector enl associated with 
this principal stress has the components stated in (9), 
while the unit vector ei associated with the vertical 
maximum principal stress has the components 0, 0, 1. 
Inserting for these vectors in (5) one easily verifies that 
all terms vanish with the exception of era" curl ein ~ 0, 
because ddP/dz ~ O. The incipient normal faults will 
therefore consist of segments which may have the same 
dip angle, but which will vary in strike and slip direction. 

A rather similar result follows when instead of a 
simple-shear phase 2, a uniaxial extension is imposed in 
a direction markedly different from the initial orienta- 
tion of the smallest compressive stress. A normal fault 
entering a depth interval with rotated horizontal princi- 
pal stresses is therefore expected to break up into seg- 
ments as sketched in Fig. 4. 

CONCLUSIONS 

In view of the cases discussed above, it would seem 
rather exceptional for a non-uniform stress field with 
non-planar character, or not associated with plane defor- 
mation, to satisfy the integrability condition (5). And 

even if such a truly three-dimensional stress field were 
found to satisfy this condition, a slight variation of the 
field, produced by a minor change in boundary con- 
ditions, would immediately cause violation of condition 
(5). Thereby, it will hardly matter whether or not the 
stress fields are subject to the additional constraint of the 
limiting condition, required for the initiation of 
Coulomb-slip elements. 

Hence, we conclude on the basis of Coulomb-Mohr's 
theory of shear failure, that in addition to variations in 
lithology (e.g. sand-shale sequences), non-uniformities 
of truly three-dimensional stress fields are a main cause 
of segmentary fault development. In such stress fields, it 
will be the rule, rather than the exception, that incipient 
faults consist of separate segments which do not lie on a 
smooth surface. This holds, in particular, for tectonic 
stress fields with horizontal principal stresses that change 
with depth in magnitude and direction. 

In contrast with this, the continuity of an incipient 
fault, in a lithologically uniform material, is not affected 
by non-uniformities of the stress field, if the deformation 
or the stresses are of a strictly planar type. 

The segmentation of incipient faults, which may be 
difficult to detect on seismic records, will not only allow 
across-fault migration of liquids, but also pre-set the 
width of the disturbed zone surrounding a fully de- 
veloped fault. 

Although this paper is concerned with the continuity 
or discontinuity of shear fractures, it should be noted 
that rather similar considerations apply to macroscopic 
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extension fractures, that is extension fractures that are 
large when compared with the size of the textural 
inhomogeneities of the rock material. It is generally 
accepted that such fractures develop normal to the 
direction of the smallest compressive (or greatest ten- 
sile) stress ~rln. Therefore, when applying condition (1), 
the vector v has to be identified with the unit vector eii I 
and eqn (5) is then replaced by the simpler relationship 

eli I • curl ein = 0. (5a) 

If this condition is not satisfied by the direction field of 
the principal stress ~rnl, macroscopic extension fractures 
cannot develop as continuous fractures. Again, the con- 
dition is always satisfied by planar stress fields and in 
plane strain, but it will rarely be satisfied by non- 
uniform, truly three-dimensional stress fields, and in 
particular not by any of the stress fields discussed in the 
preceding section. A diagram illustrating the break-up 
of a smooth extension crack into segments can be found 
in a paper by Pollard et al. (1982). In the laboratory, 
Sommer (1969) has demonstrated the disintegration of a 
smooth parent crack into numerous fracture 'lances', by 
hydraulically fracturing a glass rod under torsion. 
Indeed, in 1930, in a paper by Lagalli on the mechanics 
of crevasses in glaciers, the non-uniformity of the three- 
dimensional stress field was recognized as a cause of the 
discontinuity of extension fractures. Unfortunately, 
Lagalli's paper has been widely ignored by modern 
glaciologists. * 
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APPENDIX 

When is a vector field v(xl, x2, x3) at any point of a three-dimensional 
region normal to a surface passing through that point and belonging to 
a family of non-intersecting smooth surfaces? Let ~'(xl, x2, x3) = c 
represent the family of surfaces (c being a parameter),  then the 
gradient grad • with Cartesian coordinates O~/Oxl, oxtI/OX2, O~lOX 3 is 
a vector field which, at all points, is normal to one of these surfaces, and 
our question may be rephrased: when does a scalar field ~(Xl, x2, x3) 
exist such that 

~tv = grad q~, (10) 

where the proportionality factor ~ is a scalar function of the space 
coordinates? A completely equivalent expression is obtained by scalar 
multiplication of eqn (10) with the infinitesimal vector dx--- 
(dx,, dx2, dx3) 

~v .dx  = d~', (10a) 

where d ~  is a total differential. 
One may now easily see that validity of eqn (10) implies that 

condition (1) is satisfied. Applying the curl-operator to eqn (10) and 
noting that the curl of a gradient always vanishes, we obtain 

curl/~v = # curl v + grad p~ x v = 0. 

Since the vector associated with the vector (cross) product term is 
orthogonal to v, scalar multiplication of the last expression with v leads 
to 

v.curl v = 0. (1) 

This proves that eqn (1) is a necessary condition for the vector field v to 
be parallel to the normals of a family of smooth non-intersecting 
surfaces everywhere in the region considered (Fig. 1). 

In fact, eqn (1) is also a sufficient condition as is shown in the theory 
of first-order linear differential equations ( 'Pfaffproblem') .  The proof, 
which may be found in textbooks on differential equations, demon- 
strates that the validity of eqn (2) implies that an 'integrating factor' # 
can be found which makes expression (10a) a total differential. 
Interested geological readers may find a straightforward proof in 
Kestin's (1966; pp. 466-472) textbook of thermodynamics. 


